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a b s t r a c t 

Current knowledge of Alzheimer’s disease (AD) etiology and effective therapy remains limited. Thus, the 

identification of biomarkers is crucial to improve the detection and treatment of patients with AD. Using 

robust rank aggregation method to analyze the microarray data from Gene Expression Omnibus database, 

we identified 1138 differentially expressed genes in AD. We then explored 13 hub genes by weighted gene 

co-expression network analysis, least absolute shrinkage, and selection operator, and logistic regression in 

the training dataset. The detection model, which composed of CD163, CDC42SE1, CECR6, CSF1R, CYP27A1, 

EIF4E3, H2AFJ, IFIT2, IL10RA, KIAA1324, PSTPIP1, SLA , and TBC1D2 genes, along with APOE gene, showed that 

the area under the curve for detecting AD was 0.821 (95% confidence interval [CI] = 0.782–0.861) and 

the model was validated in ADNI dataset (area under the curve = 0.776; 95%CI = 0.686–0.865). Notably, 

the 13 genes in the model were highly enriched in immune function. These findings have implications 

for the detection and therapeutic target of AD. 

© 2022 Published by Elsevier Inc. 
Abbreviations: A β , β-amyloid; AD, Alzheimer’s disease; ADNI, Alzheimer’s Dis- 

ease Neuroimaging Initiative; APOE , Apolipoprotein E; AUC, Area under the curve; 

CN, Cognitively normal; GEO, Gene Expression Omnibus; GO, Gene ontology; KEGG, 

Kyoto Encyclopedia of Genes and Genomes; LASSO, Least absolute shrinkage and 

selection operator; ROC, Receiver operating characteristic; RRA, Robust rank aggre- 

gation; WGCNA, Weighted gene co-expression network analysis. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common type of demen-

tia, manifested by gradually decline in memory and other cogni-

tive domains. The global number of people with AD was projected

to reach over 140 million by 2050 ( Prince et al., 2015 ), which

would pose a heavy burden on the individuals and society. How-

ever, since 1907 when the first patient with AD was described, rel-

atively limited progress has been made in revealing its etiology or

in exploring effective therapy to halt its progression ( Castellani and

Perry, 2012 ; Hardy, 2006 ). This is crucial to improve the under-

standing of molecular mechanisms and to explore biomarkers for

the detection, diagnosis, and treatment of AD. 
tation of ADNI and/or provided data but did not participate in analysis or writing 
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Amyloid plaques and neurofibrillary tangles are neuropatholog-

ical hallmarks of AD, thus, β amyloid (A β) and phosphorylated

tau (p-tau) in central nervous system become unique biomarkers

for AD ( Stevenson-Hoare et al., 2022 ; Zetterberg & Bendlin, 2021 ).

Indeed, measuring the levels of A β and p-tau in the cerebrospinal

fluid, as well as amyloid or tau protein in the brain by PET scans,

would help diagnose AD. However, the invasive nature of lumbar

puncture and the high cost of PET scans limit the application of

these methods. Therefore, great efforts have been made to identify

blood biomarkers for AD diagnosis. 

Recently, several blood biomarkers other than A β and p-tau

have been reported for AD, which provides potential options for

early detection and targeted therapies. For example, plasma soluble

CD22 (sCD22), a possible biomarker of inflammation and microglial

dysfunction, was newly found to be associated with cognitive de-

cline in AD ( Bu et al., 2022 ). Furthermore, plasma concentrations of

neurofilament light and glial fibrillary acidic protein (GFAP) were

closely related to AD. In addition, a model that includes EEF2 and

RPL7 has been reported for predicting the risk of AD, providing

possible therapeutic targets ( Shigemizu et al., 2020 ). Hence, it is

urgent to discover molecular markers highly associated with AD

that could contribute to improving the effect of targeted therapeu-

tic approaches. A recent study tried to develop detection models

using blood gene expression data and machine learning methods,

which showed different external-validation performances, with the

area under the curve (AUC) ranging from 0.619 to 0.859 ( Lee &

Lee, 2020 ). However, it is unclear whether the robust differentially

expressed genes in AD brain tissues could be sturdy predictors in

blood samples for the differentiation of AD patients from cogni-

tively normal (CN) persons. 

In the present study, using data from the Gene Expression Om-

nibus (GEO) dataset, we identified 13 hub genes that were poten-

tially associated with AD risk. Prognostic risk models were built

on hub genes levels along with apolipoprotein E ( APOE ) genotypes.

Then, the risk models were validated using bootstrap method for

internal validation and by Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) dataset for external validation. In addition to APOE

genotype, the 13 hub genes included in the risk detection model

for AD were Cluster of Differentiation 163 ( CD163 ), CDC42 small

effector 1 ( CDC42SE1 ), Cat Eye Syndrome Critical Region Protein 6

( CECR6 ), Colony stimulating factor-1 receptor ( CSF1R ), Cytochrome

P450 Family 27 Subfamily A Member 1 ( CYP27A1 ), Eukaryotic

TranSLAtion Initiation Factor 4E Family Member 3 ( EIF4E3 ), H2A

Histone Family Member J ( H2AFJ ), Interferon Induced Protein With

Tetratricopeptide Repeats 2 ( IFIT2 ), Interleukin 10 Receptor Subunit

Alpha ( IL10RA ), KIAA1324 , Proline-Serine-Threonine Phosphatase In-

teracting Protein 1 ( PSTPIP1 ), Src Like Adaptor ( SLA ), and TBC1 Do-

main Family Member 2 ( TBC1D2 ). We found that all the 13 hub

genes in the risk detection model were correlated with immune

infiltration. Our study presents a new gene-based risk detection

model for AD and highlights the role of immune mechanisms in

AD, which has potential implications for AD detection and thera-

peutic targets of the disease. 

2. Methods 

2.1. Data sources 

The overall workflow of the present study is shown in Fig. A.1

( Zhong et al., 2021 ). We searched the database for the microar-

ray datasets using the keyword “Alzheimer” on GEO dataset ( https:

//www.ncbi.nlm.nih.gov/geo/ ). Datasets were included if they met

the following criteria: (1) were from humans; (2) included ex-

pression data from cerebral frontal, temporal cortex or the hip-

pocampus of both AD and CN samples; (3) the number of rows in
each platform was > 30,0 0 0; (4) the sample size was ≥10; and (5)

there were no repeated samples among datasets. Finally, 5 datasets

from the frontal cortex of AD and CN samples, 5 datasets from

temporal cortex, and 3 datasets from hippocampus were selected

( Berchtold et al., 2013 ; Hokama et al., 2014 ; Liang et al., 2007 ;

McKay et al., 2019 ; Patel et al., 2019 ; Piras et al., 2019b ). Blood ex-

pression data of GSE140829 and ADNI dataset were obtained from

GEO database and ADNI database ( https://adni.loni.usc.edu/ ). De-

tailed information for these datasets is shown in Table 1 and Table

A.1. 

2.2. Identification of differentially expressed genes and robust rank 

aggregation analysis 

GEO series matrix files of the datasets and their correspond-

ing platform files were downloaded for current analysis. Differen-

tially expressed genes (DEGs) were screened using these datasets

by the R package “limma” ( Ritchie et al., 2015 ). Those with log 2 Fold

Change (FC) > 0.5 and adjusted p value < 0.05 are defined as

DEGs. The genes were ranked according to the adjusted P values.

We then used Robust Rank Aggregation (RRA) analysis to integrate

the results of those 13 datasets to find the most significant DEGs

by the R package “RobustRankAggreg” ( Kolde et al., 2012 ). The RRA

method can detect genes that are statistically relevant and rank

them after filtering outliers, noise, and errors ( Kolde et al., 2012 ).

Genes with adjusted p < 0.05 were considered as significant DEGs

in the RRA analysis. The R package “OmicCircos” ( Hu et al., 2014 )

was used to show the expression patterns and chromosomal lo-

cation of the top 200 DEGs (top 100 up-regulated genes and top

100 down-regulated genes according to adjusted p ) from the RRA

analysis. 

2.3. Weighted gene co-expression network analysis 

Top 20 0 0 DEGs (top 10 0 0 up-regulated and top 10 0 0 down-

regulated) from RRA analysis were used to conduct Weighted Gene

Co-expression Network Analysis (WGCNA). The expression data of

top 20 0 0 DEGs were extracted from GSE140829 including blood

samples of AD and CN groups. The R package “WGCNA” ( Langfelder

& Horvath, 2008 , 2012 ) was utilized to find clinical trait-related

modules and hub genes among the DEGs. To transform the ad-

jacency matrix to a topological overlap matrix, a soft-threshold

power was selected using the code “sft$powerEstimate.” The net-

work and modules were constructed with a cut height of 0.25 and

a minimal module size of 20. Modules with significant correlation

with AD ( p < 0.05) were considered as key modules. 

2.4. Functional enrichment analyses 

Enrichment analyses were performed to further investigate the

biological functions of genes. Gene ontology (GO) and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) analyses were conducted

using the R package “clusterProfiler” ( Yu et al., 2012 ) among DEGs

from RRA analysis and genes in key modules of WGCNA, respec-

tively. GO terms and KEGG pathways with p < 0.05 were consid-

ered as significant and were exhibited either as chord diagrams us-

ing the R package “GOplot” ( Walter et al., 2015 ) or as barplots and

dotplots. 

2.5. Construction of risk detection models 

Genes from key models of WGCNA were screened using Least

absolute shrinkage and selection operator (LASSO) regression by

the R package “glmnet” ( Friedman et al., 2010 ). After cross-

validation, lambda.1se was chosen for gene filtration. Then, genes

https://www.ncbi.nlm.nih.gov/geo/
https://adni.loni.usc.edu/
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Table 1 

Characteristics of the included datasets. 

Locations Dataset Country Sample size GPL ID Number of rows per platform Usage here 

Frontal cortex GSE118553 ( Patel et al., 2019 ) UK 23CN; 40AD GPL10558 48107 RRA 

Frontal cortex GSE122063 ( McKay et al., 2019 ) USA 22CN; 28AD GPL16699 62976 

Frontal cortex GSE36980 ( Hokama et al., 2014 ) Japan 18CN; 15AD GPL6244 33297 

Frontal cortex GSE48350 ( Berchtold et al., 2013 ) USA 48CN; 21AD GPL570 54675 

Frontal cortex GSE5281 ( Liang et al., 2007 ) USA 11CN; 23AD GPL570 54675 

Hippocampus GSE36980 ( Hokama et al., 2014 ) Japan 10CN; 7AD GPL6244 33297 

Hippocampus GSE48350 ( Berchtold et al., 2013 ) USA 19CN; 43AD GPL570 54675 

Hippocampus GSE5281 ( Liang et al., 2007 ) USA 13CN; 10AD GPL570 54675 

Temporal cortex GSE118553 ( Patel et al., 2019 ) UK 31CN; 52AD GPL10558 48107 

Temporal cortex GSE122063 ( McKay et al., 2019 ) USA 22CN; 28AD GPL16699 62976 

Temporal cortex GSE36980 ( Hokama et al., 2014 ) Japan 19CN; 10AD GPL6244 33297 

Temporal cortex GSE132903 ( Piras et al., 2019b ) USA 97CN; 98AD GPL10558 48107 

Temporal cortex GSE5281 ( Liang et al., 2007 ) USA 12CN; 16AD GPL570 54675 

Blood GSE140829 USA 249CN; 204AD GPL15988 47322 WGCNA, model construction 

Blood ADNI USA 138CN; 40AD GPL13667 49386 model validation 

Abbreviations: Detailed information of GSE140829 and ADNI dataset could be referred to the websites at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi and 

adni.loni.usc.edu, respectively. AD, Alzheimer disease; CN, cognitively normal; GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform; RRA, robust 

rank aggregation; WGCNA, weighted correlation network analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

filtrated by LASSO, together with age, sex, and APOE status, were

used to construct the risk detection model by logistic regression.

“StepAIC” method with a direction of “both” was utilized to deter-

mine the robust variables for the final detection model. A receiver

operating characteristic (ROC) analysis was used to estimate the

model AUC. The ROC curves were drawn by the R package “pROC”

( Robin et al., 2011 ). 

2.6. Internal and external validation of the risk detection models 

Internal validation was conducted using the enhanced boot-

strap method with B = 10 0 0. The adjusted C statistics and brier

score were then calculated after bootstrap. Data for external vali-

dation were obtained from the ADNI database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biolog-

ical markers, and clinical and neuropsychological assessments can

be combined to measure the progression of mild cognitive impair-

ment (MCI) and early AD. For up-to-date information on ADNI, see

www.adni-info.org . AUC was then used to indicate the model ac-

curacy and bootstrap test was performed for the comparison be-

tween 2 ROC curves. Seed was set as 123 and boot.n was 20 0 0. p

< 0.05 was considered as significant difference in performance. 

2.7. Validation of expressions of model genes in datasets 

Expression data of model genes extracted from the aforemen-

tioned 13 datasets were used to validate the differential expres-

sion of these genes in the frontal cortex, temporal cortex, and hip-

pocampus. Then, the GO and KEGG analysis were performed to re-

veal the possible functions of the model genes. 

2.8. Immune infiltration analysis 

The Cell-type Identification by Estimating Relative Subsets of

RNA Transcripts (CIBERSORT) method was applied to investigat-

ing the correlation between these model genes and 22 immune

cells. p < 0.05 and correlation coefficient > 0.30 were considered

a significant correlation between genes and immune cells. Then,

the correlations between the expression of the model genes and

the immune checkpoints (Table A.2) were examined in AD and CN

groups, respectively. p < 0.05 was considered a significant corre-

lation between genes and immune checkpoints. The GO and KEGG
analysis were conducted to find the potential functions of immune

genes in different groups. 

2.9. Statistical analysis 

We used LASSO regression for gene infiltration, logistic regres-

sion for building the detection models, and enhanced bootstrap

method for internal validation. These regression analyses were

conducted using R software (version 4.0.2, R Foundation for Sta-

tistical Computing, Vienna, Austria). The t-test was applied to as-

sessing the differences between the 2 groups. All the values were

presented as means ± standard deviation (SD). A 2-tailed p < 0.05

was considered statistically significant. T-tests were performed us-

ing GraphPad Prism software (version 9.1.1, San Diego, CA, www.

graphpad.com ). 

3. Results 

3.1. Identification and chromosome locations of DEGs 

DEGs were found in 5 datasets from the frontal cortex of AD

and CN samples, 5 datasets from temporal cortex, and 3 datasets

from hippocampus, respectively (CN: total sample, N = 345; AD:

total sample, N = 391). The volcano plots are shown in Fig. A.2. Us-

ing the RRA analysis, 1138 robust DEGs (539 up-regulated and 599

down-regulated) were identified (Table A.3). We described the ex-

pression of genes described as “up-regulated” or “downregulated”

with respect to AD versus CN groups. The top 200 DEGs that in-

cluded top 100 up-regulated genes and top 100 down-regulated

ones (according to adjusted p values) were chosen to visualize

their chromosomal location and expression patterns across these

13 datasets, and to show the logarithm of their adjusted p values in

the inner layer ( Fig. 1 ). The top 5 up-regulated genes were AEBP1,

GFAP, ITPKB, PALLD , and TOB1 , whereas the top 5 down-regulated

genes were NRN1, CACNG3, ADCYAP1, NRXN3 , and MAPK9 ( Fig. 1 ). 

3.2. Enrichment analysis of DEGs 

The chord diagrams show top 5 terms of enrichment analysis

of DEGS based on their adjusted p values ( Fig. 2 ). Neurotransmit-

ter transport, vesicle-mediated transport in synapse, synaptic vesi-

cle cycle, regulation of neurotransmitter levels, and protein local-

ization to cell periphery were for the biological process terms for

GO analysis ( Fig. 2 a). Presynapse, exocytic vesicle, synaptic vesicle,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
http://www.adni-info.org
http://www.graphpad.com
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Fig. 1. Circos plot of expression patterns and chromosomal positions of top 200 differentially expressed genes (DEGs). The outer circle represents chromosomes, and lines 

coming from each gene point to their specific chromosomal locations. The Alzheimer disease (AD) microarray datasets from Gene Expression Omnibus (GEO) used for robust 

rank aggregation (RRA) analysis are represented in the inner circular multiple points and heatmaps. Datasets from frontal cortex, temporal cortex, and hippocampus are 

presented from the outside to the inside. According to the value of log2 fold change, red indicates up-regulation in AD samples while blue indicates down-regulation. The 

red lines in the inner layer indicate -log10 (adjusted p -value for RRA) of each gene. (For interpretation of the references to color in this figure legend, the reader is referred 

to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transport vesicle, and synaptic vesicle membrane were for the cel-

lular component terms for GO analysis ( Fig. 2 b). The top 5 molec-

ular function terms for GO analysis were ATPase activity, cou-

pled to transmembrane movement of ions, rotational mechanism;

proton-transporting ATPase activity, rotational mechanism; ATPase-

coupled cation transmembrane transporter activity; pyrophosphate

hydrolysis-driven proton transmembrane transporter activity; and

ATPase-coupled ion transmembrane transporter activity ( Fig. 2 c).

For KEGG analysis, DEGs were mostly related to Epithelial cell sig-

naling in Helicobacter pylori infection, Synaptic vesicle cycle, Cit-

rate cycle (TCA cycle), Vibrio cholerae infection, and Collecting duct

acid secretion ( Fig. 2 d). 
3.3. WGCNA and identification of key modules 

Expression data of top 20 0 0 DEGs from RRA analysis (top 10 0 0

up-regulated and top 10 0 0 down-regulated) were extracted from

GSE140829 (36 genes not available) and used to conduct WGCNA

( Fig. 3 , Fig. A.3). By setting the soft-threshold power as 3 (scale-

free R 

2 = 0.85, slope = -1.36; Fig. A.3) and cut height as 0.25,

we acquired 14 modules, including the grey module that contained

non-clustering DEGs. Genes in each module are shown in Table A.3.

From the heatmap of module-trait correlations, we found that the

blue, purple, red, salmon, turquoise, and yellow modules were sig-

nificantly correlated with AD ( p < 0.05 or < 0.001; Fig. 3 c). The
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Fig. 2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of all DEGs from RRA analysis. Chord plots indicate enrichment analysis of genes. 

(a) Biological process of GO analysis. (b) Cellular component of GO analysis. (c) Molecular function of GO analysis. (d) KEGG pathways. (For interpretation of the references 

to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relationships between gene significance and module membership

of the 6 key modules are also shown in Fig. A.4 (correlation coeffi-

cient = 0.48 ( p < 0.0 0 01), 0.41 ( p = 0.027), 0.41 ( p < 0.0 0 01), 0.34

( p < 0.0 0 01), 0.57 ( p < 0.0 01), and 0.24 ( p < 0.0 0 01), respectively).

3.4. Functional enrichment analysis of the key modules 

All the 6 key modules contained 941 genes (Table A.3). The en-

richment analysis showed that the blue module was mostly en-

riched in protein localization to cell periphery and membrane de-

polarization; the purple module enriched in myoblast differentia-

tion and RNA splicing; the red module in regulation of protein de-
phosphorylation and regulation of cell cycle G2/M phase transition;

the salmon module in positive regulation of neuron death and pos-

itive regulation of neuron apoptotic process; the turquoise module

in regulation of ubiquitin-dependent protein catabolic process and

regulation of protein modification by small protein conjugation or

removal; and the yellow module enriched in neutrophil degranula-

tion and transferrin transport (Fig. A.5). 

3.5. Establishment of the Risk Detection Models 

LASSO regression was performed for the screening of all the 941

genes from six key modules. GSE140829 was used as the training
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Fig. 3. Key modules correlated with Alzheimer disease identified by weighted gene co-expression network analysis (WGCNA). (a) Cluster dendrogram of genes. (b) Network 

heatmap plot of all genes. (c) Heatmap shows the relationships between different modules and clinical traits. (d) Gene significance in different modules associated with AD. 

AD, Alzheimer’s disease; CN, cognitively normal. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset (CN: N = 249; AD: N = 204). Using λ = 0.01076384, 27

genes were remained in the cross-validation of the LASSO regres-

sion (Table A.4). Together with age, sex, and APOE genotype, all 30

variables were put into the logistic regression model to create the

detection model. After stepwise regression, 14 gene variables, in-

cluding APOE genotype, CD163, CDC42SE1, CECR6, CSF1R, CYP27A1,

EIF4E3, H2AFJ, IFIT2, IL10RA, KIAA1324, PSTPIP1, SLA , and TBC1D2 ,

were included in the final risk detection model ( Table 2 ; Table A.5).

The AUC of the training model with APOE genotype was 0.821 [95%

confidence interval (CI): 0.782–0.861]. To investigate the influence

of the APOE genotype, we also built model only with APOE geno-

type using the training dataset (Table A.5), and the AUC was 0.672

[95%CI: 0.628–0.716]. Then, we compared the ROC curves of the

2 models and found significant differences between the detection

 

model including 13 genes and APOE genotype, and the model with

only APOE genotype ( p < 0.001; Fig. 4 a). 

3.6. Validation of the risk detection models 

The enhanced bootstrap method was used for internal valida-

tion of the detection models. In the enhanced bootstrap analysis,

the AUC of the detection model including 13 genes and APOE geno-

type changed from 0.821 to 0.771, and the brier score changed

from 0.170 to 0.197 (Fig. A.6a and b). 

The ADNI dataset was used for the external validation (CN:

N = 138; AD: N = 40). The APOE genotype and expression of 13

genes were extracted from the baseline data of ADNI. The AUC of

the detection model with APOE genotype in the external valida-
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Table 2 

Associations of 13 hub genes and APOE in the final detection model with Alzheimer’s disease: Logistic regression 

analysis. 

Variables β coefficient SE Exp( β) 95% CI p value 

CD163 0.329 0.171 1.389 0.996-1.949 0.054 

CDC42SE1 -0.410 0.131 0.664 0.511-0.854 0.002 

CECR6 0.243 0.150 1.275 0.953-1.715 0.104 

CSF1R -0.683 0.175 0.505 0.356-0.708 < 0.001 

CYP27A1 -0.243 0.132 0.784 0.604-1.014 0.066 

EIF4E3 0.338 0.145 1.402 1.060-1.872 0.020 

H2AFJ 0.239 0.128 1.270 0.991-1.641 0.062 

IFIT2 -0.336 0.138 0.715 0.543-0.934 0.015 

IL10RA 0.398 0.158 1.489 1.104-2.042 0.012 

KIAA1324 -0.295 0.135 0.745 0.570-0.968 0.029 

PSTPIP1 0.354 0.156 1.425 1.052-1.941 0.023 

SLA 0.254 0.144 1.289 0.974-1.713 0.077 

TBC1D2 0.483 0.186 1.620 1.120-2.348 0.010 

With one APOE ε4 allele 1.230 0.250 3.422 2.107-5.627 < 0.001 

With 2 APOE ε4 alleles 2.388 0.589 10.891 3.785-40.071 < 0.001 

Abbreviations: CI, confidence interval; SE, standard error. 

Fig. 4. Receiver operating characteristic (ROC) curve of the immune-related variables for differentiating Alzheimer’s disease and cognitively normal. (a) Comparison between 

the model with APOE genotype and the model only including APOE genotype in the training dataset. (b) Comparison of models with APOE genotype in the training dataset 

and the ADNI dataset. p value was for the tests of comparison of ROC curves using bootstrap method. (For interpretation of the references to color in this figure legend, the 

reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion was 0.776 [95%CI: 0.686–0.865]. We compared the ROC curves

of the training dataset and ADNI dataset, and found no signifi-

cant difference in the detection models with APOE genotype ( p >

0.05; Fig. 4 b). In addition, the APOE -genotype hierarchical analysis

showed no significant difference of ROC curves between the train-

ing dataset and ADNI dataset either in APOE ε4 allele carriers or in

non-carriers of the APOE ε4 allele ( p > 0.05; Fig. A.7). 

3.7. Differential expression of the model genes in datasets 

The expression data of the 13 genes ( CD163, CDC42SE1, CECR6,

CSF1R, CYP27A1, EIF4E3, H2AFJ, IFIT2, IL10RA, KIAA1324, PSTPIP1, SLA ,

and TBC1D2 ) were extracted from the 13 datasets used for RRA

analysis. Except for H2AFJ in frontal cortex and PSTPIP1, SLA, and

TBC1D2 in hippocampus, all 13 genes were differentially expressed

in the brain tissues (Fig. A.8). In addition, GO and KEGG enrich-

ment analyses were conducted to explore the potential functions

of these genes. The results suggested that these genes were most
associated with positive regulation of receptor signaling pathway

via JAK-STAT, which is critical for immune cell development and

inflammatory responses (Fig. A.9). 

3.8. Results of immune infiltration analysis 

To further validate the potential immune-regulation functions

of the 13 genes, immune infiltration analysis was performed. The

infiltration levels of activated Dendritic cells, M0 macrophages, M1

macrophages, M2 macrophages, and follicular helper T cells were

found to be correlated with model genes in AD (Fig. A.10). The

model genes were correlated with different immune checkpoints

between AD and CN groups ( Fig. 5 ). The distinct immune check-

points in AD group and CN group were significantly associated in

different biological functions (Table A.6). The immune functions of

T cell costimulation, lymphocyte costimulation, and T cell prolif-

eration were enriched in AD group, while the functions of T cell
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Fig. 5. The correlation between immune-related variables and immune checkpoints. (a) Correlation in samples of cognitively normal. (b) Correlation in samples of Alzheimer’s 

disease. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

activation, regulation of lymphocyte activation, and regulation of

leukocyte cell-cell adhesion were enriched in CN group. 

4. Discussion 

In the present study, we first identified 1138 robust DEGs be-

tween AD and CN samples. Then, a WGCNA was built, and 13
hub genes were explored by LASSO and multivariable regression

analysis. Moreover, the risk detection model, composed of CD163,

CDC42SE1, CECR6, CSF1R, CYP27A1, EIF4E3, H2AFJ, IFIT2, IL10RA,

KIAA1324, PSTPIP1, SLA , and TBC1D2 , along with APOE genotype,

served as a novel tool that was validated to be valuable for the

detection of AD risk. Notably, the model genes were highly corre-

lated with immune cells as well as immune checkpoints, indicating
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a potential role of these genes in AD via immune-related biological

pathways. 

We first analyzed the expression profiles from 13 GEO datasets

to explore key genes related to AD. The most up-regulated

gene AEBP1 has been associated with A β plagues and neurofib-

rillary tangle density ( Piras et al., 2019a ; Piras et al., 2019b ;

Shijo et al., 2018 ). Meanwhile, the most down-regulated gene NRN1

was also found to be highly correlated with Braak stages and

may represent as a novel target for the maintenance of cogni-

tion in old age ( Piras et al., 2019a ; Yu et al., 2020 ). Using the

GO and KEGG enrichment analysis, we found that DEGs might

correlate with neurotransmitter transport. The WGCNA helped

identify the co-expression modules associated with the disease.

In the key modules, genes were enriched in protein localiza-

tion, RNA splicing, protein dephosphorylation, positive regula-

tion of neuron death, ubiquitin-dependent protein catabolic pro-

cess, and neutrophil degranulation, respectively. These findings re-

vealed the potential roles of DEGs in neuron development and

degradation. 

Using LASSO and logistic regression analyses, 13 hub genes

( CD163, CDC42SE1, CECR6, CSF1R, CYP27A1, EIF4E3, H2AFJ, IFIT2,

IL10RA, KIAA1324, PSTPIP1, SLA , and TBC1D2 ) were identified to be

valuable for the detection of AD. CD163 has been implicated in

macrophage activation and could increase A β phagocytosis in AD

( Koronyo-Hamaoui et al., 2020 ). Consistent with our findings, the

level of CD163 was increased in the frontal cortices of AD pa-

tients. Moreover, CD163 -positive microglia were also enhanced and

most of them were associated with A β plaques ( Pey et al., 2014 ).

The role of CDC42SE1 encoding CDC42 small effector 1 in AD has

been poorly understood. The meta-analysis of genome-wide as-

sociation studies showed that CDC42SE1 was significantly associ-

ated with sodium excretion ( Kho et al., 2020 ). CSF1R was consid-

ered as a potential therapeutic target for neurodegenerative dis-

eases, as its inhibitors had beneficial effects in preclinical mod-

els ( Han et al., 2022 ). CSF1R was also decreased in schizophre-

nia ( Snijders et al., 2021 ). In patients with AD, CYP27A1 was de-

creased in neurons but increased in oligodendrocytes ( Brown et al.,

2004 ), which might partly explain inconsistent differences in brain

tissues between AD and CN groups in the present study. In ad-

dition, increased expression of CYP27A1 in the brain could con-

tribute to learning and memory impairment in rats ( Zhang et al.,

2018 ). TBC1D2 was reported to be associated with ventricular en-

largement in non-demented elders and might be involved in Facial

Neuralgia ( Li et al., 2019 ), indicating its possible roles in neurolog-

ical diseases. Taken together, these studies suggest that the model

genes are promising biomarkers in the development and progres-

sion of AD. 

However, little is known about CECR6, EIF4E3, H2AFJ, IFIT2,

IL10RA, KIAA1324, PSTPIP1 , and SLA in neurological diseases

or aging-related disorders. As indicated in GeneCards ( www.

genecards.org ), CECR6 , known as Transmembrane Protein 121B

(TMEM121B), is associated with Cat Eye Syndrome and Post-

menopausal Atrophic Vaginitis. EIF4E3 is related to Eyelid Disease.

H2AFJ encodes a replication-independent histone that is a variant

H2A histone. IFIT2 has been associated with Japanese Encephali-

tis and Hermansky-Pudlak Syndrome 1, while IL10RA is related

to Inflammatory Bowel Disease 28 and Autosomal Recessive and

Inflammatory Bowel Disease 28. KIAA1324 , which is also called

Endosome-Lysosome Associated Apoptosis And Autophagy Regula-

tor 1 ( ELAPOR1 ), may protect cells from cell death by upregulating

the autophagy pathway ( Deng et al., 2010 ). PSTPIP1 encoded pro-

teins were involved in cytoskeletal organization and inflammatory

processes. SLA may be relevant to cell differentiation and innate

immune response. Thus, these seldom-studied genes were highly

correlated with immune functions and future research is required
both in vitro and in vivo to further understand their roles in the

neurological diseases. 

To further explore utility of the identified genes, the risk detec-

tion models for AD were built using the expression of key genes,

with or without APOE genotype. The internal and external valida-

tion analyses showed that the model that included 13 genes and

APOE genotype performed well for detection of AD risk, indicat-

ing the model as a useful tool for AD detection and the potential

involvement of these genes in AD. Intriguingly, the model genes

were found to be enriched in immune-related pathways and were

associated with immune infiltration. In the past decades, increas-

ing attention has been paid to immune dysregulations in AD. Sev-

eral studies have demonstrated that innate immunity and inflam-

mation are critical to AD onset and progression, which may be a

therapeutic strategy to treat AD ( Ennerfelt & Lukens, 2020 ; Pons

& Rivest, 2022 ). For example, rare coding variants in PLCG2, ABI3 ,

and TREM2 were identified in patients with AD, implicating the

dysregulation of microglial-mediated innate immunity in the dis-

ease pathogenesis ( Sims et al., 2017 ). It was reported that targeted

immunotherapy of the central nervous system in animals could

reduce the activation of innate immunity and neurodegeneration,

suggesting the possible clinical benefit for AD therapy ( Ryu et al.,

2018 ). Furthermore, we also found that several genes in the AD de-

tection models were involved in neuroinflammation and immune

activation that were associated with development and progression

of AD. For example, the expression of CD163 could be enhanced

by the over-expression of ACE, which is an amyloid- β protein de-

grading enzyme ( Koronyo-Hamaoui et al., 2020 ). CD163 can act as

a surface scavenger receptor and may mediate internalization of

oligomeric A β ( Huang et al., 2013 ). In addition, previous studies

indicated that targeting the activity of CSF1R could inhibit neu-

roinflammation and slow neuronal damage and disease progres-

sion, especially in mouse models of AD ( Gomez-Nicola et al., 2013 ;

Mancuso et al., 2019 ). These findings suggested the potential in-

volvement of the model genes in immune activation and AD pro-

gression, which deserves further investigation. 

In addition, our study suggests that APOE is one of the robust

genes in the detection models. It has been well established that

APOE ε4 allele is a risk gene for AD onset, especially in sporadic AD

( Jia et al., 2020 ; Martens et al., 2022 ). The AD risk is dose depen-

dent, as those carrying 1 APOE ε4 allele have a 2-3-fold increased

risk for AD, while those carrying 2 ε4 alleles have a 10-15-fold in-

creased AD risk ( Troutwine et al., 2022 ). Recent research also found

that the APOE genotype-mediated and immune-related pathways

were involved in AD ( Panitch et al., 2022 ), indicating the effect of

APOE ε4 allele and immunity in the development and progression

of the disease. 

Nevertheless, this study has several limitations. First, even

though our cross-sectional study showed that the detection model

worked well both in the internal and external datasets, future

large-scale longitudinal studies among different ethnic populations

are warranted to validate our results and further develop the risk

prediction models for AD. Second, the interactions between the 13

hub genes and the potential mechanisms in AD development and

progression have not been explored clearly and should be exam-

ined in the future. 

5. Conclusions 

In summary, by analyzing the microarray data from GEO

database, we identified 13 key genes that were associated with AD

risk. A detection model consisting of the key genes and APOE geno-

type was developed and validated in internal and external datasets.

Furthermore, all the model genes were found to be related to im-

mune infiltration, providing a promising strategy for AD diagnosis

http://www.genecards.org
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and treatment. Future experimental research may help clarify the

biological function and mechanisms of these genes in AD patho-

genesis and progression. 
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